Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Mar Pollut Bull ; 200: 116098, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38310721

ABSTRACT

Climate change is viewed as the primary threat to coral reefs, with local pressures exacerbating coral cover decline. The consensus is that improving water quality may increase resilience, but disentangling water quality and temperature impacts is difficult. We used distance-based linear models and random forests to analyze spatiotemporal variation in benthic community structure and interannual changes in the coral assemblage, in relation to specific environmental metrics in Southeast Florida. Temperature accounted for most of the variation, recruitment doubled and interannual increases in coral abundance tripled when mean annual temperature reached 27 °C, until maximum temperatures exceeded 31 °C. Benefits associated with warmer temperatures were negated by poor water quality, as nutrient enrichment was related to increased macroalgal cover, reduced coral recruitment and higher coral partial mortality. We suggest reducing local pressures will contribute to reduced macroalgae and enhance coral recovery, but that temperature is the predominant influence on coral assemblages.


Subject(s)
Anthozoa , Animals , Temperature , Florida , Anthropogenic Effects , Coral Reefs
2.
Proc Biol Sci ; 288(1961): 20211613, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34666521

ABSTRACT

The rapid loss of reef-building corals owing to ocean warming is driving the development of interventions such as coral propagation and restoration, selective breeding and assisted gene flow. Many of these interventions target naturally heat-tolerant individuals to boost climate resilience, but the challenges of quickly and reliably quantifying heat tolerance and identifying thermotolerant individuals have hampered implementation. Here, we used coral bleaching automated stress systems to perform rapid, standardized heat tolerance assays on 229 colonies of Acropora cervicornis across six coral nurseries spanning Florida's Coral Reef, USA. Analysis of heat stress dose-response curves for each colony revealed a broad range in thermal tolerance among individuals (approx. 2.5°C range in Fv/Fm ED50), with highly reproducible rankings across independent tests (r = 0.76). Most phenotypic variation occurred within nurseries rather than between them, pointing to a potentially dominant role of fixed genetic effects in setting thermal tolerance and widespread distribution of tolerant individuals throughout the population. The identification of tolerant individuals provides immediately actionable information to optimize nursery and restoration programmes for Florida's threatened staghorn corals. This work further provides a blueprint for future efforts to identify and source thermally tolerant corals for conservation interventions worldwide.


Subject(s)
Anthozoa , Thermotolerance , Animals , Anthozoa/physiology , Censuses , Coral Reefs , Florida
3.
Sci Rep ; 11(1): 14113, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34238939

ABSTRACT

Rare species population dynamics can elucidate the resilience of an ecosystem. On coral reefs, climate change and local anthropogenic stressors are threatening stony coral persistence, increasing the need to assess vulnerable species locally. Here, we monitored the threatened pillar coral, Dendrogyra cylindrus, population in southeast Florida, USA, in relation to consecutive heat stress events in 2014 and 2015. In the fall of each year, D. cylindrus colonies bleached following intense thermal stress and by June 2020 all monitored colonies died from a white-syndrome type disease. This resulted in the ecological extinction of D. cylindrus in the Southeast Florida Coral Reef Ecosystem Conservation Area (ECA). White-syndrome type disease was first seen in February 2014 on four colonies (19% prevalence) near the major international port, Port Everglades and disease prevalence peaked in fall 2015 (58%). Disease prevalence increased with maximum water temperature, while disease related mortality increased with mean water temperature. Our findings suggest that thermal stress exacerbated underlying stony coral disease, resulting in an outbreak contributing to the ecological extirpation of D. cylindrus in the ECA. We suggest that stony coral resilience is severely compromised by chronic environmental disturbance which hinders community recovery.


Subject(s)
Anthozoa/physiology , Endangered Species , Stress, Physiological , Temperature , Animals , Florida , Geography , Water
4.
Adv Mar Biol ; 87(1): 83-114, 2020.
Article in English | MEDLINE | ID: mdl-33293021

ABSTRACT

Little to no recovery in Acropora cervicornis populations has been documented since the 1970s and 1980s widespread disease events, and disease and predation appear to remain significant drivers of mortality. However, to date, demographic studies of A. cervicornis lack data temporally or spatially sufficient to quantify factors limiting recovery. Acropora cervicornis populations in three regions [Broward County (BWD), Middle Keys (MDK), and Dry Tortugas (DRTO)] of the Florida Reef Tract were surveyed up to three times per year from 2011 to 2015. Temporal and spatial differences were evaluated for colony size, live tissue volume, and prevalence and impact of disease and predation. Significantly larger colonies were reported in BWD, and at relatively deeper or more sheltered sites. At least 43% of colonies in each region were of reproductively capable size. Mean relative change in colony size between surveys (3-5 months) ranged from -20% to 19%. Disease and predation were consistently present in all regions, but levels varied significantly across space and time. Disease prevalence was the most variable condition (ranging from 0% to 28% per survey), increasing after periods of elevated temperatures and environmental disturbances, and caused significantly more partial mortality than fireworm (Hermodice carunculata) or snail (Coralliophila spp.) predation. Recovery potential and long-term persistence of this species may be limited due to the persistent presence of disease and predation, and reproductive limitations. However, there is still potential at sites of greater depth and/or more protection hosted larger and healthier colonies creating potential refugia for this species.


Subject(s)
Anthozoa , Coral Reefs , Animals , Conservation of Natural Resources , Endangered Species , Florida
5.
PeerJ ; 6: e4433, 2018.
Article in English | MEDLINE | ID: mdl-29507829

ABSTRACT

Acropora cervicornis is the most widely used coral species for reef restoration in the greater Caribbean. However, outplanting methodologies (e.g., colony density, size, host genotype, and attachment technique) vary greatly, and to date have not been evaluated for optimality across multiple sites. Two experiments were completed during this study, the first evaluated the effects of attachment technique, colony size, and genotype by outplanting 405 A. cervicornis colonies, from ten genotypes, four size classes, and three attachment techniques (epoxy, nail and cable tie, or puck) across three sites. Colony survival, health condition, tissue productivity, and growth were assessed across one year for this experiment. The second experiment assessed the effect of colony density by outplanting colonies in plots of one, four, or 25 corals per 4 m2 across four separate sites. Plot survival and condition were evaluated across two years for this experiment in order to better capture the effect of increasing cover. Colonies attached with a nail and cable tie resulted in the highest survival regardless of colony size. Small corals had the lowest survival, but the greatest productivity. The majority of colony loss was attributed to missing colonies and was highest for pucks and small epoxied colonies. Disease and predation were observed at all sites, but did not affect all genotypes, however due to the overall low prevalence of either condition there were no significant differences found in any comparison. Low density plots had significantly higher survival and significantly lower prevalence of disease, predation, and missing colonies than high density plots. These results indicate that to increase initial outplant success, colonies of many genotypes should be outplanted to multiple sites using a nail and cable tie, in low densities, and with colonies over 15 cm total linear extension.

6.
Glob Chang Biol ; 24(2): 773-785, 2018 02.
Article in English | MEDLINE | ID: mdl-29076634

ABSTRACT

Changes in coral-sponge interactions can alter reef accretion/erosion balance and are important to predict trends on current algal-dominated Caribbean reefs. Although sponge abundance is increasing on some coral reefs, we lack information on how shifts from corals to bioeroding sponges occur, and how environmental factors such as anomalous seawater temperatures and consequent coral bleaching and mortality influence these shifts. A state transition model (Markov chain) was developed to evaluate the response of coral-excavating sponges (Cliona delitrix Pang 1973) after coral bleaching events. To understand possible outcomes of the sponge-coral interaction and build the descriptive model, sponge-corals were monitored in San Andres Island, Colombia (2004-2011) and Fort Lauderdale, Florida (2012-2013). To run the model and determine possible shifts from corals to excavating sponges, 217 coral colonies were monitored over 10 years (2000-2010) in Fort Lauderdale, Florida, and validated with data from 2011 to 2015. To compare and test its scalability, the model was also run with 271 coral colonies monitored in St. Croix, US Virgin Islands over 7 years (2004-2011), and validated with data from 2012 to 2015. Projections and sensitivity analyses confirmed coral recruitment to be key for coral persistence. Excavating sponge abundance increased in both Fort Lauderdale and St. Croix reefs after a regional mass bleaching event in 2005. The increase was more drastic in St. Croix than in Fort Lauderdale, where 25% of the healthy corals that deteriorated were overtaken by excavating sponges. Projections over 100 years suggested successive events of coral bleaching could shift algae-coral dominated reefs into algae-sponge dominated. The success of excavating sponges depended on the intensity of coral bleaching and consequent coral mortality. Thus, the proportion of C. delitrix excavating sponges is a sensitive indicator for the intensity and frequency of recent disturbance on Caribbean coral reefs.


Subject(s)
Anthozoa/physiology , Coral Reefs , Porifera/physiology , Animals , Colombia , Florida , Islands , Markov Chains , Models, Biological , Seawater , Temperature , Time Factors
7.
PeerJ ; 4: e2473, 2016.
Article in English | MEDLINE | ID: mdl-27703844

ABSTRACT

Dense Acropora cervicornis aggregations, or patches, have been documented within nearshore habitats in Southeast Florida (SE FL) despite close proximity to numerous anthropogenic stressors and subjection to frequent natural disturbance events. Limited information has been published concerning the distribution and abundance of A. cervicornis outside of these known dense patches. The first goal of this study was to conduct a spatially extensive and inclusive survey (9.78 km2) to determine whether A. cervicornis distribution in the nearshore habitat of SE FL was spatially uniform or clustered. The second goal was to investigate potential relationships between broad-scale seafloor topography and A. cervicornis abundance using high resolution bathymetric data. Acropora cervicornis was distributed throughout the study area, and the Getis-Ord Gi* statistic and Anselin Local Moran's I spatial cluster analysis showed significant clustering along topographic features termed ridge crests. Significant clustering was further supported by the inverse distance weighted surface model. Ordinal logistic regression indicated 1) as distance from a ridge increases, odds of reduced A. cervicornis abundance increases; 2) as topographic elevation increases, odds of increased abundance increases; and 3) as mean depth increases, odds of increased abundance increases. This study provides detailed information on A. cervicornis distribution and abundance at a regional scale and supports modeling its distributions in similar habitats elsewhere throughout the western Atlantic and Caribbean. Acropora cervicornis is frequently observed and in areas an abundant species within the nearshore habitat along the SE FL portion of the Florida Reef Tract (FRT). This study provides a better understanding of local habitat associations thus facilitating appropriate management of the nearshore environment and species conservation. The portion of the FRT between Hillsboro and Port Everglades inlets should be considered for increased management and protection to reduce local stressors.

8.
Rev. biol. trop ; 62(supl.3): 299-308, Jul.-Sep. 2014. ilus, graf, mapas, tab
Article in English | LILACS | ID: lil-757333

ABSTRACT

Recent evidence shows that Acropora palmata within the Veracruz Reef System, located in the southwestern Gulf of Mexico, may be recovering after the die off from the flooding of the Jamapa River and a dramatic cold water event in the 1970s. Since this decline, few surveys have documented the status of A. palmata. The 28 named reefs in the system are divided into 13 northern and 15 southern groups by the River. Between 2007 and 2013, we surveyed 24 reefs to assess the benthic communities. Seven of the 11 reefs surveyed in the northern group and all in the southern group had A. palmata. Colonies were typically found on the windward side of the reefs in shallow waters along the reef edges or crest. We also recorded colony diameter and condition along belt transects at two reefs in the north (Anegada de Adentro and Verde) and two in the south (Periferico and Sargazo), between 2011 and 2013. In addition, eight permanent transects were surveyed at Rizo (south). A total of 1 804 colonies were assessed; densities ranged from 0.02 to 0.28 colonies/m² (mean (±SD), colony diameter of 58 ± 73cm, and 89 ± 18% live tissue per colony). Total prevalence of predation by damselfish was 5%, by snails 2%, and <1% by fireworms, disease prevalence was <3%. Size frequency distributions indicated that all of the sites had a moderate to high spawning potential, 15-68% of the colonies at each site were mature, measuring over 1 600cm². The presence of these healthy and potentially reproductive colonies is important for species recovery, particularly because much of the greater Caribbean still shows little to no signs of recovery. Conservation and management efforts of these reefs are vital.


Evidencia reciente indica que las poblaciones de Acropora palmata del sistema arrecifal de Vera Cruz, ubicado al suroeste del Golfo de México, podría estarse recuperando después de las inundaciones del río Jamapa e intrusiones de agua fría que afectaron la región en los años setenta. Desde la disminución, pocos estudios han documentado el estado A. palmata. Consiste de 28 arrecifes divididos 13 al norte y 15 al sur del río. Entre el 2007 y 2013 se muestrearon 24 arrecifes para caracterizar las comunidades bentónicas. Siete de los 11 arrecifes del norte y en todos los arrecifes del sur tenían A. palmata. Las colonias se encontraron por lo general en el barlovento de los corales en agua sómeras a lo largo del borde del arrecife. También registramos los diámetros de las colonias y condición a lo largo de transectos tipo conturón en dos arrecifes al norte (Anegada de Adentro y Verde) y dos en el sur (Periférico y Sargazo), entre el 2011 y 2013. Además, ocho transectos se evaluaron en Rizo (al sur). Evaluamos un total de 1 804 colonias; las densidades variaron entre 0.02 a 0.28 colonias/m² (promedio (±DE) del diámetro de colonia 58± 3cm y 89±18% de tejido vivo por colonia). La depredación fue 5% por peces damisela, 2% por caracoles y <1% por gusanos, prevalencia de enfermedades <3%. La distribución de tamaños indicó que las poblaciones tienen un potencial moderado a alto de desove, 15-68 de las colonias eran maduras, y medían más de 1 600cm².La presencia de estas colonias saludables y potencialmente reproductivas son importantes para la recuperación de especies, particularmente porque el Caribe muestra muy pocas o ninguna señale de recuperación. Esfuerzos en conservación y manejo en estos arrecifes es vital.

9.
PLoS One ; 8(11): e80439, 2013.
Article in English | MEDLINE | ID: mdl-24282542

ABSTRACT

Climate change has recently been implicated in poleward shifts of many tropical species including corals; thus attention focused on higher-latitude coral communities is warranted to investigate possible range expansions and ecosystem shifts due to global warming. As the northern extension of the Florida Reef Tract (FRT), the third-largest barrier reef ecosystem in the world, southeast Florida (25-27° N latitude) is a prime region to study such effects. Most of the shallow-water FRT benthic habitats have been mapped, however minimal data and limited knowledge exist about the coral reef communities of its northernmost reaches off Martin County. First benthic habitat mapping was conducted using newly acquired high resolution LIDAR bathymetry and aerial photography where possible to map the spatial extent of coral reef habitats. Quantitative data were collected to characterize benthic cover and stony coral demographics and a comprehensive accuracy assessment was performed. The data were then analyzed in a habitat biogeography context to determine if a new coral reef ecosystem region designation was warranted. Of the 374 km(2) seafloor mapped, 95.2% was Sand, 4.1% was Coral Reef and Colonized Pavement, and 0.7% was Other Delineations. Map accuracy assessment yielded an overall accuracy of 94.9% once adjusted for known map marginal proportions. Cluster analysis of cross-shelf habitat type and widths indicated that the benthic habitats were different than those further south and warranted designation of a new coral reef ecosystem region. Unlike the FRT further south, coral communities were dominated by cold-water tolerant species and LIDAR morphology indicated no evidence of historic reef growth during warmer climates. Present-day hydrographic conditions may be inhibiting poleward expansion of coral communities along Florida. This study provides new information on the benthic community composition of the northern FRT, serving as a baseline for future community shift and range expansion investigations.


Subject(s)
Anthozoa/physiology , Coral Reefs , Animals , Climate Change , Cluster Analysis , Florida
10.
Rev. biol. trop ; 60(supl.1): 99-108, Mar. 2012. ilus, graf, tab
Article in English | LILACS, SaludCR | ID: lil-657857

ABSTRACT

Over the last two decades, more than 10 major vessel groundings have occurred on coral reefs offshore southeast Florida. Lack of any published information on coral settlement, post-settlement survival, and juvenile coral growth in the southeast Florida region inhibits efforts to determine if coral populations will be able to effectively re-establish themselves. The goal of this study was to examine these processes to obtain background data needed to determine the potential for natural recovery. Over a three year period annual coral recruitment, juvenile growth, and mortality rates were measured in 20 permanent quadrats at each of two ship grounding and two control sites. The density of new recruits was generally low, ranging from 0.2±0.1 (SE) to 7.1±1.0 recruits m-2. Although the density of coral recruits was generally higher at the grounding sites, mortality rates were high at all sites during the study period. Growth rates of individual colonies were highly variable, and many of the colonies shrank in size due to partial mortality. Results indicate that corals are able to recruit to the damaged reefs but that slow growth rates and high mortality rates may keep these areas in a perpetual cycle of settlement and mortality with little or extremely slow growth to larger size classes, thus inhibiting recovery.


En las dos últimas décadas, más de10 grandes encallamientos de embarcaciones se han producido en los arrecifes de coral mar afuera en el sureste de Florida. La falta de información publicada sobre el asentamiento de corales y sobrevivencia post-asentamiento y de los corales juveniles que crecen en la región, limita los esfuerzos para determinar si las poblaciones de coral serán capaces de restablecerse por ellas mismas. El objetivo de este estudio fue examinar estos procesos para obtener la información necesaria para determinar el potencial de recuperación natural. Se midió el reclutamiento anual de coral joven, el crecimiento y las tasas de mortalidad por un período de tres años, mediante 20 cuadrantes permanentes en cada uno de los dos encallamientos de barcos y dos sitios de control. La densidad de nuevos reclutamientos fue generalmente baja, de 0.2±0.1 a 7.1±1.0 reclutamientos m-2. Aunque la densidad del reclutamiento fue generalmente más alta en los sitios de encallamiento también hubo mayor mortalidad de corales juveniles en esos sitios durante el período de estudio. Las tasas de crecimiento de las colonias individuales fueron altamente variables, y muchas de las colonias se redujeron en tallas debido a mortalidad parcial. Los resultados indican que los corales presentan una disposición a reclutarse en arrecifes dañados, pero las lentas tasas de crecimiento y la alta mortalidad pueden mantener esas áreas en un perpetuo ciclo de asentamiento y mortalidad con poco o extremadamente lento crecimiento hacia las clases de tallas largas, por lo tanto inhibiendo la recuperación.


Subject(s)
Florida , Anthozoa/anatomy & histology , Coral Reefs , Ships , United States
11.
PLoS One ; 5(11): e13969, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-21125021

ABSTRACT

BACKGROUND: The rising temperature of the world's oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin. METHODOLOGY/PRINCIPAL FINDINGS: Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the timing and location of researchers' field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005. Field surveys of bleaching and mortality exceeded prior efforts in detail and extent, and provided a new standard for documenting the effects of bleaching and for testing nowcast and forecast products. Collaborators from 22 countries undertook the most comprehensive documentation of basin-scale bleaching to date and found that over 80% of corals bleached and over 40% died at many sites. The most severe bleaching coincided with waters nearest a western Atlantic warm pool that was centered off the northern end of the Lesser Antilles. CONCLUSIONS/SIGNIFICANCE: Thermal stress during the 2005 event exceeded any observed from the Caribbean in the prior 20 years, and regionally-averaged temperatures were the warmest in over 150 years. Comparison of satellite data against field surveys demonstrated a significant predictive relationship between accumulated heat stress (measured using NOAA Coral Reef Watch's Degree Heating Weeks) and bleaching intensity. This severe, widespread bleaching and mortality will undoubtedly have long-term consequences for reef ecosystems and suggests a troubled future for tropical marine ecosystems under a warming climate.


Subject(s)
Anthozoa/growth & development , Coral Reefs , Stress, Physiological/physiology , Temperature , Animals , Caribbean Region , Climate , Ecosystem , Environmental Monitoring , Geography , Oceans and Seas , Survival Analysis , Water Movements
12.
J Invertebr Pathol ; 95(2): 140-5, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17350649

ABSTRACT

We present evidence of cellular responses to increased sedimentation and temperature in Montastraea cavernosa collected off Broward County, Florida. We sampled corals from six different sites approximately, 500-1000 m off shore, 10-15m depth. Six samples were collected from four sites adjacent to areas of underwater marine dredging (project sites), while the remaining two samples were obtained far away from the influence of the marine dredging (control sites). SSTs around collection time ranged 0.6-0.9 degrees C over the 40-year monthly mean. All specimens collected at project sites exhibited histopathological evidence of mild to moderate sedimentation stress including changes in size and number of mucocytes in epidermis and gastrodermis, attenuation of the epidermal and gastrodermal tissues, presence of cellular debris, and changes in number of zooxanthellae. These findings corroborate results of laboratory-based, sand-application experiments. In addition to the above-noted changes, one specimen exhibited multiple lesions consisting of unusual gastrodermal detachment with infiltration of amoebocytes into the adjacent mesoglea. Tissues surrounding detachment injuries exhibited marked to severe cellular changes. Accumulations of amoebocytes at lesion sites are seldom observed in wild corals. This response may be part of an organized reaction to injury and infection, as has been documented in sea anemones and gorgonians; however, further research is needed on the nature and role(s) of the scleractinian amoebocytes.


Subject(s)
Anthozoa/ultrastructure , Geologic Sediments , Temperature , Animals , Florida
SELECTION OF CITATIONS
SEARCH DETAIL
...